Synthesis and Diels-Alder reactions of 2-acetamido-3-phenylthio-buta-1,3-diene and its derivatives

Shang-Shing P. C hou, ${ }^{*, \mathrm{a}}$ Tahsin J. C how, ${ }^{\mathrm{b}} \mathrm{C}$ hien- H ung H su, ${ }^{\mathrm{a}} \mathrm{C}$ hengda Y ang, ${ }^{\text {a }}$ Shu-H ua L ong ${ }^{\text {a }}$ and C hih-D a Lin ${ }^{\text {a }}$
a D epartment of Chemistry, FuJ en C atholic U niversity Taipei, Taiwan 242, Republic of China
${ }^{\text {b }}$ Institute of C hemistry, A cademia Sinica Taipei, Taiwan 117, Republic of China

Abstract

3-A cetamido-4-sulfur-substituted 3-sulfolenes $2 \mathrm{a}-\mathrm{c}$ which are convenient precursors to the corresponding dienes $1 \mathrm{a}-\mathrm{c}$ have been synthesized. The D iels-A Ider reactions of the dienes $1 \mathrm{a}-\mathrm{c}$ can be efficiently carried out by heating the 3 -sulfolenes $2 \mathrm{a}-\mathrm{c}$ with dienophiles. The reactions with unsymmetrical dienophiles demonstrate that the 'para'-directing ability of the substituents on the 2,3-disubstituted 1,3-dienes follows the order $\mathrm{AcN} \mathbf{H}>\mathrm{PhSO}_{2}>\mathrm{PhS}>\mathrm{PhSO}$. H owever, Lewis acids can change significantly the regioselectivity of the reaction; for the diene 1a, the regiocontrol is even reversed. Semiempirical analyses of the diene FMO coefficients and the transition states involved in the cycloaddition provide some insight into the factors which affect the regioselectivity.

Diels-A lder reactions are widely used in the synthesis of complex cyclic molecules, ${ }^{1}$ and in this connection much progress has been made in the preparation of highly functionalized dienes. ${ }^{2}$ Recently, ${ }^{3,4}$ 2,5-dihydrothiophene S,S-dioxides (3-sulfolenes) have been extensively used as stable precursors to substituted 1,3-dienes which are often quite sensitive to heat, light and acids. We have also used this method to synthesize some sulfursubstituted dienes. ${ }^{5}$ One important feature of the Diels-A Ider reaction which is of great interest to both theoretical ${ }^{6}$ and synthetic ${ }^{7-9}$ chemists is the regiochemical control exerted by different groups on the competing positions of the diene. The introduction of hetero substituents on the diene is especially useful because they further increase the reactivity of the diene as well as the synthetic versatility of the cycloadducts. ${ }^{10}$ The attachment of two hetero substituents at the 2 - and 3 -positions of the diene has been reported. ${ }^{9}$ We have also used 3 -sulfolene chemistry to synthesize some 2,3-dihetero substituted buta-1,3dienes and found that the regiocontrol of these substituents in the Diels-A Ider reaction follows the order $\mathrm{PhS}>\mathrm{PhSO}>\mathrm{Ph}-$ $\mathrm{SO}_{2}>\mathrm{M} \mathrm{e}_{3} \mathrm{Si} .{ }^{11}$ This order was not the same as that predicted for 4 -sulfur-substituted buta-1,3-diene-1-carbamates ($\mathrm{RO}_{2} \mathrm{C}$ $\left.\mathrm{NH}>\mathrm{PhSO}_{2}>\mathrm{PhS}>\mathrm{PhSO}\right) .{ }^{12}$ This variance may be attributable to the different substitution positions involved or the different interactions between the neighbouring substituents. To clarify this, we now report the first synthesis and Diels-A Ider reactions of 2 -acetamido-3-phenylthiobuta-1,3-diene la and its sulfoxide $\mathbf{1 b}$ and sulfone $\mathbf{1 c}$ derivatives from the corresponding 3 -sulfolene precursors $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{2 c}$.

Results and discussion

Cycloadditions

Treatment of 3 -azido-4-phenylthio-3-sulfolene ${ }^{39}$ with thioacetic acid gave 3-acetamido-4-phenylthio-3-sulfolene 2a (56\%) Presumably the azido group was first reduced by thioacetic acid
to the amino group which was subsequently acylated by thioacetic acid to give the amido sulfide $\mathbf{2 a} \cdot{ }^{13} \mathrm{C}$ ontrolled oxidation of the sulfide 2a with different amounts of m-chloroperbenzoic acid (M CPBA) gave the sulfoxide $\mathbf{2 b}(55 \%)$ and the sulfone $\mathbf{2 c}$ (80\%). Compound $\mathbf{2 a}$ underwent desulfonylation ${ }^{14}$ in refluxing toluene to give the desired diene la (72\%). The thio-substituted diene la was selectively oxidized to the corresponding sulfoxide $\mathbf{l b}$ or sulfone $\mathbf{l c}$ by using suitable amounts of M CPBA.

The new diene la could be distilled in vacuo and was fully characterized by spectral methods, but the dienes $\mathbf{1 b}$ and $\mathbf{l c}$ were rather unstable, and decomposed upon distillation. Thus, it was more convenient to use the 3 -sulfolene precursor 2 directly for the Diels-A Ider reactions. Compound $\mathbf{2}$ when heated with dienophiles in toluene in a sealed tube at $165^{\circ} \mathrm{C}$ for 6 h yielded cyclization products (Table 1). The reactions of 2 a with N phenylmaleimide (entry 1) and dimethyl acetylenedicarboxylate (entry 2) gave the cycloaddition products 4 (99%) and 5 (92%). This indicates that the diene la is highly reactive, probably due to the two electron-donating groups attached. The reaction of 3 -sulfolene 2a with methyl propynoate gave two isomeric products 6 a and 7 a ($2.5: 1$) in 89% yield (entry 3). Similar reactions of methyl propynoate with $\mathbf{2 b}$ (entry 4) and with $\mathbf{2 c}$ (entry 5) gave lower yields of an isomeric mixture of products 6 and 7 , consistent with the lower electron density of the dienes $\mathbf{1 b}$ and $\mathbf{1 c}$. The reactions of $\mathbf{2 a}$ and $\mathbf{2 c}$ with methyl acrylate (entries 6,7) and methyl vinyl ketone (entries 8,9) gave similar cycloaddition products 8 - $\mathbf{1 1}$. Compounds $\mathbf{6 a}$ and 7 a were separated by HPLC, and oxidized by M CPBA (2.2 equiv.) to the corresponding sulfones $\mathbf{6 c}$ and $\mathbf{7 c}$ which were identical with those obtained from

Table 1 Diels-A Ider reactions of the 3-sulfolenes 2

Entry	R eactant	Dienophile	Product (ratio) ${ }^{\text {a }}$	Y ield \% ${ }^{\text {b }}$
1	2a	N -Phenylmaleimide	4	99
2	2a	$\mathrm{MeO} 2 \mathrm{CC} \equiv \mathrm{CCO}_{2} \mathrm{Me}$	5	92
3	2a	$\mathrm{HC} \equiv \mathrm{CCO}_{2} \mathrm{Me}$	$6 \mathrm{a}+7 \mathrm{a}(2.5: 1)$	89
4	2b	$\mathrm{HC} \equiv \mathrm{CCO}_{2} \mathrm{Me}$	$\mathbf{6 b}+\mathbf{7 b}(3.8: 1)$	56
5	2c	$\mathrm{HC} \equiv \mathrm{CCO}_{2} \mathrm{Me}$	6c + 7c (2.1:1)	60
6	2a	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Me}$	$8 \mathrm{a}+9 \mathrm{a}(2.3: 1)$	90
7	2c	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Me}$	$8 \mathrm{c}+9 \mathrm{c}(1.6: 1)$	77
8	2a	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCOMe}$	$10 \mathrm{a}+11 \mathrm{a}(2.5: 1)$	99
9	2c	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCOM} \mathrm{e}$	10c + 11c (1.7:1)	61
10	1a	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCOM} \mathrm{e}{ }^{\text {c }}$	10a + 11a (1:5)	69
11	1b	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCOM} \mathrm{e}{ }^{\text {c }}$	10c + 11c (2.2:1) ${ }^{\text {d }}$	$46^{\text {e }}$
12	1c	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCOM} \mathrm{e}{ }^{\text {c }}$	10c + 11c (5.6:1)	$31^{\text {f }}$

a The isomer ratio was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude product. ${ }^{\text {b }}$ Isolated yield of purified products. ${ }^{\text {c }}$ The reaction was carried out in the presence of zinc chloride (10 equiv.) and dichloromethane at room temperature for 2 d . ${ }^{\mathrm{d}}$ The diastereomeric mixture (2.7:1.6:1:1) of sulfoxides obtained from the D iels-A Ider reaction was directly oxidized by M CPBA to the sulfones. ${ }^{\text {e }}$ Combined yield of DielsA Ider reaction and M CPBA oxidation. ${ }^{\mathrm{f}}$ Combined yield of preparation of $\mathbf{1 c}$ from $\mathbf{2 c}$ and the Diels-A lder reaction of $\mathbf{1 c}$.
entry 5. The major product $\mathbf{6 c}$ upon treatment with sodium hydroxide in methanol gave methyl 4-acetamidobenzoate 12, whereas a mixture of $\mathbf{6 c}$ and $\mathbf{7 c}$ under similar conditions gave a mixture of 12 and methyl 3 -acetamidobenzoate 13 . This demonstrates that the major isomers $6 \mathrm{a}-\mathrm{c}$ have the carboxylate group 'para' to the acetamido group, and thus the acetamido group has a stronger directing effect than the phenylthio group in determining the regioselectivcity of the D iels-A Ider reaction of dienes 1 . By comparing entries 3,4 and 5 , it can be seen that the 'para'-directing ability of substituents in the Diels-A Ider reactions of the dienes $\mathbf{1}$ follows the order $\mathrm{AcNH}>\mathrm{PhSO}_{2}>\mathrm{Ph}$ $\mathrm{S}>\mathrm{PhSO}$. The directing ability of $\mathrm{AcNH}>\mathrm{PhSO}_{2}>\mathrm{PhS}$ can also be shown by comparing entry 6 with 7 , and entry 8 with 9 .

a, $X=P h S, b, X=P h S O, c, X=\mathrm{PhSO}_{2}$

We have also carried out some Lewis acid-catalysed DielsAlder reactions with the dienes 1a-c (Table 1, entries 10-12). The reaction of $1 \mathbf{1 a}$ with methyl vinyl ketone in the presence of zinc chloride at room temperature gave a mixture of 10a and 11a in a ratio of $1: 5$ (entry 10). It is interesting to note that the

Fig. 1 Geometry optimized (PM 3) for $\mathbf{1 b}$ (a) and the orbital drawing for its HOMO (b). (a) Hydrogen bonding exists between H and O , which helps to keep the diene moiety co-planar. (b) The size of the circles is proportional to the amplitude of the conjugated p orbitals.
regioselectivity of the Lewis acid-catalysed reaction is controlled by the phenylthio group as opposed to the acetamido group in the thermal reaction (entry 8). On the other hand, similar Lewis acid-catalysed reactions of the dienes $\mathbf{1 b}$ and $\mathbf{1 c}$ with methyl vinyl ketone (entries 11 and 12) still showed regiocontrol by the acetamido group. The regioselectivity for the sulfonesubstituted diene $\mathbf{l c}$ was considerably enhanced by the Lewis acid (compare entries 9 and 12).

Semiempirical FM 0 analysis

The FMO coefficients and energies for compounds la-c estimated by two semiempirical models ${ }^{15}$ A M 1 and PM 3 are listed in Table 2. In all cases the acetamido substituent (at C-2) is shown to be a stronger para-directing group than the sulfur-containing substituents (at $\mathrm{C}-3$), which is established by comparison of the coefficients $\mathrm{c}_{1}{ }^{2}>\mathrm{c}_{4}{ }^{2}$. Variation in product ratios among these three compounds is not self-evident so that an analysis on their structural and electronic configurations was performed.

For $\mathbf{1 b}$ and $\mathbf{1 c}$ the HOM Os are composed mainly of the π orbitals of the diene and the acetamido group but with minimal involvement of any orbitals localized on the sulfur moieties [F igs. 1(b) and 2]. A s shown in Table 2, both the ($\mathrm{c}_{1}{ }^{2} / \mathrm{c}_{4}{ }^{2}$) ratios for sulfoxide $\mathbf{1 b}\left(0.54^{2} / 0.19^{2}\right)$ and sulfone $\mathbf{l c}\left(0.56^{2} / 0.19^{2}\right)$ as calculated by the PM 3 method predict a higher regiocontrol by the acetamido group for the cycloaddition (cf. 3.8/1.0 and 2.1/1.0 in Table 1). Estimations by A M 1 are also given in Table 2, which are consistent with those of PM 3.
In all the calculations listed in Table 2 the diene moieties are held at a pseudo cis conformation in order to normalize the parameters for better comparison. Even in the absence of such a constraint, the fully optimized geometries of $\mathbf{1 b}$ and $\mathbf{1 c}$ are primarily s-cis and planar with a small rotational barrier along $\mathrm{C}(2)-\mathrm{C}(3)$. Intramolecular hydrogen bonding exists between the acetamido NH and the sulfoxide SO groups, which helps to maintain a six-membered ring conformation between the

Table 2 Semiempirical FM O calculations for compounds la-c. The diene moieties (C-1 to C-4) are set to a pseudo-cisoid conformation, and all other atoms are allowed to optimize fully with key word PRECISE. The c_{i} values are coefficients for the vertical π-orbitals of the corresponding carbons in HOM Os and SHOM Os

	M odel	$\begin{aligned} & \mathrm{HF} \\ & \left(\mathrm{kcal} \mathrm{~mol}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { HOM O \& } \\ & \text { SHOM O } \end{aligned}$	(eV)	C_{1}	C_{2}	C_{3}	C_{4}
1a	PM 3	26.96	HOM O	-8.86	0.47	0.28	-0.23	-0.42
			SHOM O	-9.20	0.27	0.18	0.16	0.24
	AM 1	28.58	HOMO	-8.50	0.31	0.18	-0.26	-0.50
			SHOM O	-9.09	0.55	0.40	0.00	0.00
1b	PM 3	-1.10	HOMO	-8.75	0.54	0.30	-0.07	-0.19
	A M 1	-3.42	HOMO	-8.87	0.62	0.42	-0.14	-0.28
1c	PM 3	-36.63	HOMO	-8.89	0.56	0.32	-0.08	-0.19
	AM 1	-31.25	HOMO	-9.05	0.63	0.43	-0.14	-0.26

Fig. 2 Orbital drawing for the HOMO of 1c calculated by PM 3. A hydrogen bond is shown between H and O .
subsitituents [Fig. 1(a)]. When computed by M NDO where hydrogen bonding is not considered, the conformations of 1a-c are in twisted forms with large values for the dihedral angle $C(1)-C(2)-C(3)-C(4)$.

Unlike $\mathbf{1 b}$ and $\mathbf{1 c}$, the conformation of $\mathbf{l a}$ is predicted to be non-planar since it is incapable of forming an internal hydrogen bond. The geometry of 1a as fully optimized by PM 3 (AM 1 and M NDO likewise) ${ }^{15}$ prefers a conformation with 84° for the dihedral angle $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ (Fig. 3). The $\mathrm{N}-\mathrm{C}(2)-\mathrm{C}(1)$ and $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{S}$ groupings are arranged nearly orthogonal so that their π-orbitals cannot delocalize across each other. However, the eigenvalues for either canonical orbitals are quite close, i.e. -8.94 and -8.98 eV for the HOM O and SHOM O, respectively (PM 3). Both the acetamido and phenylthio groups resonate strongly with the conjugated $\mathrm{C}=\mathrm{C}$ double bonds; in this form it is rather difficult to predict which group controls the regioselectivity.

For the convenience of comparison as mentioned above, the diene moiety of $\mathbf{1 a}$ is held planar manually by setting up the dihedral angle $C(1)-C(2)-C(3)-C(4)$ to 0°. The π-orbitals of the acetamido and phenylthio groups are forced to mix with each other and, as a consequence, the two energy levels split. The HOMO and SHOMO of 1 a change to -8.86 and -9.20 eV (PM 3), respectively as shown in Table 2. The coefficient $\mathrm{c}_{1}{ }^{2}$ $\left(0.47^{2}\right)$ of the HOMO is slightly larger than that of $\mathrm{C}_{4}{ }^{2}\left(0.42^{2}\right)$, showing that both substituents interact significantly with the π orbitals of the diene. The coefficients calculated by AM 1 are al so shown in the table, where a reversed order is obtained, i.e. $c_{1}{ }^{2}<c_{4}^{2}$. These models therefore predict nearly equal regiodirecting abilities for the acetamido and phenylthio groups. The unexpected stronger regiodirecting power of the acetamido group as observed in experiments has also been recognized earlier by 0 verman et al. for 1,4 -disubstituted dienes. ${ }^{7 c}$ It seems that in these cases the regioselectivity is not only governed by the HOM O coefficients, but also by electronic factors such as polarity of the molecule ${ }^{12}$

Fig. 3 The twisted geometry of $\mathbf{1 a}$ is optimized by PM 3 at its lowest energy, in which the dihedral angleC (1)-C (2)-C (3)-C (4) is estimated to be 84°

A combined effect of both F M O coefficients and electrostatic potentials may be properly expressed by examining their transition states. A transition state modeling (AM 1) ${ }^{16}$ is performed for the adduct of 1a and methyl vinyl ketone in the two orientations leading to 10a and 11a. In these calculations the dihedral angle $C(1)-C(2)-C(3)-C(4)$ is constrained at 0° in order to hold the diene moiety co-planar. The dienophile is arranged in a pseudo trans conformation which approaches the diene according to the endo addition rule. ${ }^{17}$ The estimated distances between the terminal carbons in the progress of bond formation are in the range of 2.0-2.2 \AA (F ig. 4). It is interesting to find that the transition state for 10a ($\mathbf{1 0 a} \mathbf{- T}, 26.03 \mathrm{kcal} \mathrm{mol}^{-\mathbf{1}}$) is slightly more stable than that for 11a (11a-T, $26.58 \mathrm{kcal} \mathrm{mol}^{-1}$). Some bonding parameters of 10a-T and 11a-T are listed in Table 3. This provides some evidence for our hypothesis that the regioselectivity of this reaction is not determined only by the FMO coefficients.
In Lewis acid-catalysed reactions, the primary effect of the Lewis acid is to lower the LUMO energy of the dienophile, along with some changes of the orbital coefficients. In a model study for methyl vinyl ketone, the LUMO potential is lowered by 1.03 eV upon co-ordinating to $\mathrm{ZnCl}_{2} .{ }^{16} \mathrm{The}\left(\mathrm{c}_{1} / \mathrm{c}_{2}\right)^{2}$ ratio of the LUM O for the vinylic carbons increases from 1.98 to 2.93 . These changes will not only increase the rate of reaction, but also put more weight on the LUM O coefficients in determining the regioselectivity. This may be part of the reason for the enhancement of the product ratio $\mathbf{1 0} \mathbf{c} / \mathbf{1 1 c}$ (5.6) in entry 12 catalysed by ZnCl_{2} as compared with that in entry 9 (1.7).

The reversed regiodirecting behaviour for the acetamido group and the phenylthio group in entry 10 ($\mathbf{1 a}$ with ZnCl_{2}) and entry 8 (2 a without ZnCl_{2}) indicates that the L ewis acid can interact not only with the dienophile but also with the diene. The endo transition states 10a-T and 11a-T are more favourable because the diene can also interact with the acetyl group of the dienophile through a secondary orbital effect. In the transition state 11a-T (Fig. 4), the acetyl oxygen and the acetamido group on the diene can co-ordinate simultaneously with the metal of the Lewis acid. We think that it is such chelating structures which determine the regioselectivity of the cycloaddition. The resulting product 11a shows that the phenylthio group is

Table 3 Estimated heats of formation (HF) and selected bond lengths for the transition states of cycloaddition of 1a with methyl vinyl ketone in two geometries referred to in Fig. 4 (unit of length in \AA). Bonds in bold are in the progress of formation

	$C(1)-C(2)$	$C(2)-C(3)$	$C(3)-C(4)$	$\mathbf{C (4) - C (5)}$	$C(5)-C(6)$	$\mathbf{C (6) - C (1)}$	$H F$ $\left(k c a l_{m o l}^{-1}\right)$	Final adduct
$\mathbf{1 0 a - T}$	1.40	1.43	1.38	$\mathbf{2 . 2 3}$	1.39	$\mathbf{2 . 0 6}$	26.03	$\mathbf{1 0 a}$
$\mathbf{1 1 a - T}$	1.40	1.43	1.38	$\mathbf{2 . 0 9}$	1.38	$\mathbf{2 . 2 0}$	$\mathbf{2 6 . 5 8}$	$\mathbf{1 1 a}$

(a)

(b)

Fig. 4 Calculated transition state structures (AM 1) for the cycloaddition of la with methyl vinyl ketone in two orientations. Hydrogens are omitted for clarity. The structure 10a-T which leads to adduct 10a is predicted to be slightly more stable $\left(26.03 \mathrm{kcal} \mathrm{mol}^{-\mathbf{1}}\right)$ than 11a-T which leads to 11 a (bottom, $26.58 \mathrm{kcal} \mathrm{mol}^{-1}$).
located para to the acetyl group and is regarded as the regiodirector, contrary to the thermal reaction. The situations for $\mathbf{1 b}$ and $\mathbf{1 c}$ are different from that of $\mathbf{1 a}$, because an oxygen atom on the sulfur increases the polarity of these substituents so that in the transition state the S-O group co-ordinates better with the zinc ion than the acetamido group. Therefore, the sulfoxide or the sulfone group is located preferably meta to the acetyl group to yield 10b and 10c. The observed regioselectivities for the Lewis acid-catalysed reactions of $\mathbf{1 b}$ and $\mathbf{1 c}$ are thus similar to those for the thermal reaction which can be estimated by the FM O coefficients.
From the above analysis, it can be seen that the para-directing ability of $\mathrm{AcNH}>\mathrm{PhSO}_{2}, \mathrm{PhSO}$ as exemplified by dienes 1 b and $\mathbf{1 c}$ is clearly due to a more effective delocalization of the acetamido group in the HOM Os than the sulfur substituents. The directing ability of $\mathrm{AcNH}>\mathrm{PhS}$ for diene la agrees with a transition state analysis, in which electrostatic factors are also considered. In the presence of Lewis acid, the geometry of the transition state is determined by the formation of a better coordination between the metal and electronegative substituents. The attraction force between the metal and these groups is therefore responsible for the enhanced regioselectivity for $\mathbf{1 c}$, and the reversed order of regiodirecting ability in the case of la ($\mathrm{PhS}>\mathrm{AcNH}$). While comparing the relative regiodirecting abilities of the sulfur substituents with or without the Lewis acid, the rule of additivity could be overshadowed by the complicated interactions between the substituents. ${ }^{12}$

Abstract

Summary We have synthesized 3 -sulfolenes $\mathbf{2 a - c}$ which are convenient precursors to the corresponding dienes $\mathbf{1 a - c}$. The Diels-A Ider reactions of la-c can be efficiently carried out by heating the 3sulfolenes $2 \mathrm{a}-\mathrm{c}$ with dienophiles. The reactions with unsymmetrical dienophiles demonstrate that the 'para'-directing ability of the substituents on the 2,3-disubstituted 1,3-dienes follows the order $\mathrm{AcNH}>\mathrm{PhSO}_{2}>\mathrm{PhS}>\mathrm{PhSO}$ which is the same as that predicted for 4 -sulfur-substituted buta-1,3-diene-1carbamates, ${ }^{12}$ but is different from what we have observed for 2,3-disulfur-substituted 1,3 -dienes ($\mathrm{PhS}>\mathrm{PhSO}>\mathrm{PhSO}_{2}$). ${ }^{11}$ H owever, a Lewis acid can change significantly the regioselectivity of the reaction. For the diene 1a, the regiocontrol is reversed, and for the diene $\mathbf{1 c}$, the regioselectivity is enhanced. A semiempirical FMO analysis indicates that the effect of substituents on the regioselectivity of the Diels-A Ider reaction is a combination of the influence of FM O coefficients and electrostatic factors, and that the L ewis acid can preferentially interact with different substituents on the diene.

Experimental

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} N M \mathrm{R}$ spectra were measured in CDCl_{3} at 300 and 75 MHz , respectively, with tetramethyIsilane as the internal standard. HPLC was carried out with a LiChrosorb (M erck) column. The silica gel used for flash chromatography was made by M erck (60 H). All reagents were of reagent grade and were purified prior to use. ${ }^{18}$

3-A cetamido-4-phenylthio-2,5-dihydrothiophene S, S-dioxide 2a

 A mixture of 3-azido-4-phenylthio-2,5-dihydrothiophene S,Sdioxide $3^{19}(0.97 \mathrm{~g}, 3.6 \mathrm{mmol})$ and thioacetic acid ($2.7 \mathrm{~cm}^{3}, 36$ mmol) was stirred at room temperature for 12 h . The excess of thioacetic acid was removed from the mixture in vacuo, and the crude product was purified by flash chromatography using hexane-ethyl acetate ($3: 1$ to $1: 1$) as the eluent to give 2 a ($0.57 \mathrm{~g}, 56 \%$) as a white crystalline solid; $\mathrm{mp} 122-124^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3305(\mathrm{NH}), 1687(\mathrm{CO}), 1310\left(\mathrm{SO}_{2}\right)$ and 1130 $\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.74(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 1.2$, $5-\mathrm{H}), 4.58(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 1.2,2-\mathrm{H}), 7.23-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and 8.00 (1 H, br s, NH); $\delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 23.9\left(\mathrm{CH}_{3}\right), 55.9(5-\mathrm{C})$, 57.6 (2-C), 102.6 (4-C), 127.7 (Ph), 128.8 (Ph), 129.8 (Ph), 131.1 (3-C), 135.8 (Ph) and 168.1 (CO); m/z $283\left(\mathrm{M}^{+}, 10 \%\right)$ and 110 (100) (Found: M^{+}, 283.0339. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}_{2}$ requires M , 283.0338).
3-A cetamido-4-phenyIsulfinyl-2,5-dihydrothiophene S,S-dioxide 2b

To a solution of 2a ($57 \mathrm{mg}, 0.20 \mathrm{mmol}$) in dichloromethane (5 cm^{3}) at $0^{\circ} \mathrm{C}$ was added M CPBA ($42 \mathrm{mg}, 0.22 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h and then washed sequentially with aqueous sodium hydrogen carbonate ($20 \mathrm{~cm}^{3}$) and aqueous sodium thiosulfate $\left(20 \mathrm{~cm}^{3}\right)$. The solvent was removed from the mixture by rotary evaporation, to give the product $\mathbf{2 b}$ (33 $\mathrm{mg}, 55 \%$) as a white crystalline solid after recrystallization from ethyl acetate-hexane; mp $187-189^{\circ} \mathrm{C}$ (decomp.); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 3250(\mathrm{NH}), 1692$ (CO) and $1030(\mathrm{SO})$; $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}$; $\mathrm{CDCl}_{3}-{ }^{2} \mathrm{H}_{6}$]acetone) $1.78(3 \mathrm{H}, \mathrm{s}, \mathrm{A} \mathrm{C}), 3.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2,5-$ H), 3.26 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2,5-\mathrm{H}$), 4.17 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.8,2-\mathrm{H}$), 4.19 (1 H, d, J 13.8, 2-H), 7.19-7.22 (3 H, m, Ph), 7.32-7.35 (2 H, m,

Ph) and $9.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.3\left(\mathrm{CH}_{3}\right)$, 51.8 (5-C), 58.8 (2-C), 107.9 (4-C), 125.5 (Ph), 130.3 (Ph), 133.1 (Ph), 137.2 (3-C), 140.6 (Ph) and $168.3(\mathrm{CO}) ; \mathrm{m} / \mathrm{z} 299\left(\mathrm{M}^{+}, 3 \%\right)$, 110 (100) and 78 (32) (Found: M^{+}, 299.0283. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}_{2}$ requires M , 299.0287).

3-A cetamido-4-phenylsulfonyl-2,5-dihydrothiophene S,S-dioxide

 2cTo a solution of the sulfide $\mathbf{2 a}$ ($57 \mathrm{mg}, 0.20 \mathrm{mmol}$) in dichloromethane ($5 \mathrm{~cm}^{3}$) at $0{ }^{\circ} \mathrm{C}$ was added MCPBA ($84 \mathrm{mg}, 0.44$ mmol). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , and then worked up and purified as for $\mathbf{2 b}$ to give the sulfone $\mathbf{2 c}$ ($50 \mathrm{mg}, 80 \%$) as a white crystalline solid; $\mathrm{mp} 201-203{ }^{\circ} \mathrm{C}$ (decomp.); $v_{\max }(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 3345(\mathrm{NH}), 1720(\mathrm{CO}), 1327\left(\mathrm{SO}_{2}\right)$ and $1142\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.54(2 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 4.43(2 \mathrm{H}, \mathrm{s}$, 2-H), 7.40-7.44 (2 H, m, Ph), 7.50-7.58 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.68-7.72 $(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $10.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $24.0\left(\mathrm{CH}_{3}\right), 51.8$ (5-C), 75.3 (2-C), 106.5 (4-C), 126.9 (Ph), 129.4 (Ph), 134.3 (Ph), 138.3 (3-C), 139.3 (Ph), 167.9 (CO); m/z 315 $\left(\mathrm{M}^{+}, 2 \%\right)$ and 110 (100) (Found: $\mathrm{M}^{+}, 315.0239 . \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S}_{2}$ requires M, 315.0236)

2-A cetamido-3-phenylthiobuta-1,3-diene 1a

A solution of the 3 -sulfolene $\mathbf{2 a}$ ($57 \mathrm{mg}, 0.20 \mathrm{mmol}$) in toluene $\left(3 \mathrm{~cm}^{3}\right)$ was heated at reflux under nitrogen for 8 h and then evaporated in vacuo. The crude product was purified by flash chromatography using hexane-ethyl acetate ($2: 1$) as the eluent to give 1a ($32 \mathrm{mg}, 72 \%$) as an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3278$ (NH) and $1675(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 5.23(1$ H, br s, 1-H), 5.37 ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$), 5.69 ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$), $5.82(1 \mathrm{H}, \mathrm{br}$ s, 1-H), $6.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $7.26-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{c}}(75$ $\mathrm{M} \mathrm{Hz;} \mathrm{CDCl} 3$) $24.4\left(\mathrm{CH}_{3}\right), 104.4(1-\mathrm{C}), 118.4(4-\mathrm{C}), 127.8(\mathrm{Ph})$, 129.2 ($\times 2,2-\mathrm{C}$ and Ph), 131.4 (Ph), 132.7 (3-C), 141.7 (Ph) 168.4 (CO); m/z 219 (M ${ }^{+}, 14 \%$), 144 (37), 110 (100) and 109 (26) (Found: $\mathrm{M}^{+}, 219.0722 . \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NOS}$ requires $\mathrm{M}, 219.0719$).

2-A cetamido-3-phenyIsulfinylbuta-1,3-diene 1b

To a solution of 1 a ($70 \mathrm{mg}, 0.32 \mathrm{mmol}$) in dichloromethane (2 cm^{3}) at $0^{\circ} \mathrm{C}$ was added dropwise a solution of M CPBA (50%; $110 \mathrm{mg}, 0.32 \mathrm{mmol}$) in dichloromethane ($3 \mathrm{~cm}^{3}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2.5 h , after which 10% aqueous sodium thiosulfate ($5 \mathrm{~cm}^{3}$) and 10% aqueous sodium hydrogen carbonate ($5 \mathrm{~cm}^{3}$) were added to it. The mixture was then extracted with dichloromethane ($10 \mathrm{~cm}^{3} \times 3$) and the combined extracts were dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$, and concentrated by rotary evaporation. The crude product was purified by flash column chromatography using hexane-ethyl acetate ($2: 1$) as eluent to give $\mathbf{1 b}$ ($74 \mathrm{mg}, 98 \%$) as a viscous liquid; $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.98$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{Ac}), 4.73(1 \mathrm{H}, \mathrm{br}$ s, 1-H), $5.77(1 \mathrm{H}, \mathrm{br}$ s, 1-H), $6.01(1 \mathrm{H}, \mathrm{s}$, 4-H), 6.12 ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$), 7.46-7.50 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.55-7.60 (2 H , $\mathrm{m}, \mathrm{Ph})$ and $8.12(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.3$ $\left(\mathrm{CH}_{3}\right), 104.6(1-\mathrm{C}), 121.1(4-\mathrm{C}), 124.7$ (Ph), $129.1(\times 2,2-\mathrm{C}$ and $\mathrm{Ph}), 131.3$ (Ph), 135.7 (3-C), 141.4 (Ph) and 168.8 (CO).

2-A cetamido-3-phenylsulfonylbuta-1,3-diene 1c

Similar reaction conditions and work-up procedure were employed as for $\mathbf{1 b}$ except that twice the amount of M CPBA (2.5 equiv.) was used, and the solvent was not completely removed to avoid the dimerization of $\mathbf{1 c}$. Since neat $\mathbf{1 c}$ is not stable, this concentrated solution of $\mathbf{1 c}$ in dichloromethane was directly used for the L ewis acid-catalysed Diels-A Ider reaction.

General procedure for the \mathbf{D} iels-A Ider reactions of 2a-c

A mixture of the 3 -sulfolene $\mathbf{2}$ (0.23 mmol), dienophile (0.46 mmol) and hydroquinone (3 mg) in toluene ($1 \mathrm{~cm}^{3}$) was heated in a sealed tubeat $165^{\circ} \mathrm{C}$ for 6 h . The solvent was removed from the reaction mixture by rotary evaporation, and the crude product was purified by flash chromatography using hexane-ethyl acetate ($1: 1$) as the eluent. The regioi somers were then separated by HPLC using hexane-ethyl acetate (gradient) as the eluent.

N -P henyl-4-acetamido-5-phenylthio-1,2,3,6-tetrahydro-

phthalimide 4. A white crystalline solid, $\mathrm{mp} \quad 139-141^{\circ} \mathrm{C}$ (decomp.); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3338(\mathrm{NH})$ and $1670(\mathrm{CO}) ; \delta_{\mathrm{H}}(300$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) 2.03 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}$), 2.64-2.82 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 3.03 (1 H, dd, J 16.8, 8.2, 3-H), 3.21-3.30 (1 H, m, 2-H), 3.32-3.41 (1 H, m, 1-H), 3.61 (1 H, dd, J 16.8, 1.8, 3-H), 7.13-7.22 ($3 \mathrm{H}, \mathrm{m}$, SPh), 7.22-7.31 (2 H, m, SPh), 7.35-7.51 (5 H, m, NPh) and $7.63(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 23.9\left(\mathrm{CH}_{3}\right), 27.6(6-$ C), 30.5 (3-C), 39.8 (2-C), 40.1 (1-C), 111.8 ($5-\mathrm{C}$), 126.2 (Ph), 127.2 (Ph), 128.5 (Ph), 129.0 (Ph), 129.3 (Ph), 129.7 (Ph), 131.9 (4-C), 132.9 (Ph), 139.7 (Ph), 168.7 (CO), 177.5 (CO) and 177.6 (CO); m/z 392 ($\mathrm{M}^{+}, 24 \%$) and 283 (100) (Found: $\mathrm{M}^{+}, 392.1194$. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires M , 392.1196).
Dimethyl 4-acetamido-5-phenylthiocyclohexa-1,4-diene-1,2dicarboxylate 5. A white crystalline solid, $\mathrm{mp} 117-118^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3350(\mathrm{NH}), 1734$ (CO), 1716 (CO) and 1697 (CO); $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.21(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.1$, $6-\mathrm{H}), 3.72(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{M} \mathrm{e}$), $3.80(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), $3.96(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.1$, 3-H), 7.19-7.34 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and $8.08(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{c}}(75$ $\mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}$) $24.6(4-\mathrm{M} \mathrm{e}), 30.8(6-\mathrm{C}), 32.5(3-\mathrm{C}), 52.39(1-\mathrm{M} \mathrm{e})$, $52.44(2-\mathrm{M} \mathrm{e}), 105.5(5-\mathrm{C}), 126.8(\mathrm{Ph}), 128.2(\mathrm{Ph}), 129.5(\mathrm{Ph})$, 130.7 (2-C), 132.1 (4-C), 132.8 (1-C), 137.4 (Ph), 167.0 (CO), 167.5 (CO) and 168.6 (CO); m/z 361 (M ${ }^{+}, 17 \%$) and 220 (100) (Found: $\mathrm{M}^{+}, 361.0972 . \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{M}, 361.0985$).
M ethyl 4 -acetamido-5-phenylthiocyclohexa-1,4-dienecarboxylate 6 a . A white crystalline solid, $\mathrm{mp} 117-118{ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 3359(\mathrm{NH})$ and $1720(\mathrm{CO})$; $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.03$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.13$ ($2 \mathrm{H}, \mathrm{dt}, \mathrm{J} 1.7,8.1,6-\mathrm{H}$), 3.69 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 3.83 (2 H, dt, J 3.8, 8.1, 3-H), 6.90-6.95 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 7.18$7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $8.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 24.7 ($4-\mathrm{M} \mathrm{e}$), 30.4 ($6-\mathrm{C}$), 30.7 ($3-\mathrm{C}$), 51.7 ($1-\mathrm{M} \mathrm{e)} ,107.0(5-\mathrm{C}$), 126.5 (Ph), 128.1 (Ph), 129.4 ($\times 2, \mathrm{Ph}), 133.4$ (1-C), 134.6 (2-C), 137.8 (Ph), 166.4 (CO), 168.6 (CO); m/z 303 ($\mathrm{M}^{+}, 7 \%$) and 194 (100) (Found: M^{+}, 303.0922. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$ requires M , 303.0930).

M ethyl 5 -acetamido-4-phenylthiocyclohexa-1,4-dienecarboxylate 7a. A whitecrystalline solid, $\mathrm{mp} 131-132^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 3355(\mathrm{NH})$ and $1720(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.04$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.06$ ($2 \mathrm{H}, \mathrm{dt}, \mathrm{J} 3.8,8.0,3-\mathrm{H}$), 3.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), $3.81(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.0,6-\mathrm{H}), 6.84-6.87(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 7.18-7.31$ (5 $\mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.97(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 24.6$ ($5-\mathrm{M} \mathrm{e}$), 28.8 ($3-\mathrm{C}$), 32.4 ($6-\mathrm{C}$), 51.8 ($1-\mathrm{M} \mathrm{e)}$,126.6 (Ph), 127.0 (Ph), 128.3 ($1-\mathrm{C}$), 129.4 ($\times 2,2-\mathrm{C}$ and Ph), 133.2 ($5-\mathrm{C}$), 134.9 (Ph), 166.6 (CO) and 167.3 (CO); m/z 303 (${ }^{+}, 8 \%$), 194 (100) and 162 (23) (Found: $\mathrm{M}^{+}, 303.0916 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N} \mathrm{O}_{3} \mathrm{~S}$ requires M , 303.0930).

M ethyl 4-acetamido-5-phenylsulfinylcyclohexa-1,4-dienecarboxylate 6 b . A white crystalline solid, $\mathrm{mp} 106-108{ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 3230(\mathrm{NH}), 1695$ (CO) and 1670 (CO); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.84-2.96(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.61-3.72$ ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 3.73 (3 H, s, 1-M e), 6.81-6.87 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 7.50-7.60 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.65-7.82 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and $10.26(1 \mathrm{H}$, $\mathrm{br} \mathrm{s}, \mathrm{NH}$); $\delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz}\right.$ CDCl $\mathrm{CD}_{3} 23.3$ (4-M e), 24.5 ($6-\mathrm{C}$), 31.4 (3-C), 51.8 (1-M e), 116.8 ($5-\mathrm{C}$), 125.1 (Ph), 125.6 ($1-\mathrm{C}$), 129.6 (Ph), 131.6 (Ph), 134.3 (2-C), 139.6 (4-C), 141.6 (Ph), 166.0 (CO) and 169.1 (CO); m/z 319 ($\mathrm{M}^{+}, 23 \%$), 260 (72), 228 (26), 194 (76), 151 (100), 125 (58) and 120 (89) (Found: M^{+}, 319.0876. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{M}, 319.0879$).

M ethyl 5-acetamido-4-phenylsulfinylcyclohexa-1,4-dienecarboxylate 7b. A white crystalline solid, $\mathrm{mp} 114-116^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 3240(\mathrm{NH}), 1703(\mathrm{CO})$ and $1030(\mathrm{SO}) ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 2.16 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}$), 2.58-2.73 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 2.98-3.16 (1 H, m, 3-H), 3.42-3.54 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 3.73 ($3 \mathrm{H}, \mathrm{s}, ~ 1-\mathrm{Me}$ e, 6.79$6.83(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 7.48-7.56(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.74-7.78(2 \mathrm{H}, \mathrm{m}$, Ph) and $9.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 24.2(5-\mathrm{M} \mathrm{e})$, 29.7 (3-C), 30.3 ($6-\mathrm{C}$), 51.9 (1-M e), 121.0 ($4-\mathrm{C}), 125.1$ (Ph), 126.6 (1-C), 129.4 (Ph), 131.3 (Ph), 133.6 (2-C), 139.8 (5-C), 141.0 (Ph), 165.9 (CO) and 169.2 (CO); m/z 319 (M ${ }^{+}, 32 \%$), 260 (55), 194 (63), 193 (55), 151 (84), 120 (82), 84 (100) and 77 (38) (Found: $\mathrm{M}^{+}, 319.0873 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{M}, 319.0879$).

M ethyl 4-acetamido-5-phenylsulfonylcyclohexa-1,4-dienecarboxylate 6 c . A white crystalline solid, $\mathrm{mp} 141-143^{\circ} \mathrm{C}$ (decomp.); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3317(\mathrm{NH}), 1710(\mathrm{CO}), 1675(\mathrm{CO}), 1365\left(\mathrm{SO}_{2}\right)$ and $1133\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.16(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.08(2$ H, dt, J 1.7, 6.1, 6-H), 3.69 (3 H, s, 1-M e), 3.85 ($2 \mathrm{H}, \mathrm{dt}$, J 3.8 , $6.1,3-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{br}$ s, 2-H), 7.50-7.67 (3 H, m, Ph), 7.79$7.88(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $10.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}(75 \mathrm{M} \mathrm{Hz} ;$ CDCl_{3}) 25.0 (4-M e), 25.4 ($6-\mathrm{C}$), 30.7 (3-C), 51.8 (1-M e), 110.3 (5-C), 125.6 (1-C), 127.1 (Ph), 129.4 (Ph), 133.0 (2-C), 133.8 (Ph), 139.7 (4-C), 142.6 (Ph), 165.7 (CO) and 168.5 (CO); m/z 335 (${ }^{+}, 21 \%$), 293 (37), 292 (51), 291 (59), 260 (52), 225 (50), 194 (93), 193 (69), 167 (64), 162 (50), 152 (76), 151 (80), 149 (97), 120 (100) and 93 (84) (Found: $\mathrm{M}^{+}, 335.0814 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N} \mathrm{O}_{5} \mathrm{~S}$ requires M , 335.0828).
M ethyl 5-acetamido-4-phenylsulfonyIcyclohexa-1,4-dienecarboxylate 7c. A whitecrystalline solid, $\mathrm{mp} 132-134^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 3325(\mathrm{NH}), 1710(\mathrm{CO}), 1675(\mathrm{CO}), 1365\left(\mathrm{SO}_{2}\right)$ and 1130 $\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.19(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.00-3.15(2 \mathrm{H}$, m, 3-H), 3.73 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{M} \mathrm{e}$), 3.86-3.98 (2 H , m, 6-H), 6.80-6.88 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 7.43-7.72 (3 H, m, Ph), 7.79-7.98 (2 H, m, Ph) and $10.49(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 25.4(5-\mathrm{Me})$, 26.9 (3-C), 28.9 ($6-\mathrm{C}), 51.9$ (1-M e), 109.1 (4-C), 126.0 (1-C), 127.0 (Ph), 129.4 (Ph), 132.8 (2-C), 133.8 (Ph), 139.8 (5-C), 144.4 (Ph), 165.7 (CO) and 168.3 (CO); m/z 335 (${ }^{+}$, 2\%), 194 (37), 167 (32), 151 (31), 149 (100) and 77 (31) (Found: M^{+}, $335.0820 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{M}, 335.0828$).

M ethyl 4-acetamido-3-phenylthiocyclohex-3-enecarboxylate 8a and methyl 3-acetamido-4-phenylthiocyclohex-3-enecarboxylate 9a. Thesetwo compounds could not be separated by H PLC, and were viscous liquids. The following data were measured for the mixture: $v_{\text {max }}$ (film)/cm ${ }^{-1} 3350$ (NH), 1737 (CO), 1731 (CO), 1691 (CO) and 1666 (CO); $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz;} \mathrm{CDCI}{ }_{3}\right.$) 1.72-1.90 (m), 2.02 (s), 2.08-2.20 (m), 2.25-2.38(m), 2.40-2.57 (m), 2.60-2.83 (m), 2.85-3.16 (m), 3.20-3.35 (m), 3.66 (s), 3.70 (s), 7.10-7.35 (m), 7.88 (br s) and 7.99 (br s); m/z $305\left(\mathrm{M}^{+}, 14 \%\right)$ and 196 (100) (Found: $\mathrm{M}^{+}, 305.1075 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{M}, 305.1085$). The two isomers have distinct ${ }^{1} \mathrm{H}$ NM R absorptions at $\delta 3.65$ and 3.70, respectively, for the methoxycarbonyl group. The ${ }^{13} \mathrm{C}$ NMR signals were quite distinctive so that the following assignments could be made.

Compound 8a: $\delta 24.9$ ($4-\mathrm{M} \mathrm{e}$), 27.3 (2-C), 32.5 ($5-\mathrm{C}$), 39.6 (1C), $51.8(1-\mathrm{M} \mathrm{e}), 107.6$ (3-C), 126.3 (Ph), 127.8 (Ph), 129.3 (Ph), 133.9 (4-C), 142.0 (Ph), 168.3 (CO) and 174.8 (CO).

Compound 9a: $\delta 24.1$ (6-C), 24.7 (4-M e), 29.3 (5-C), 30.6 (2C), 39.1 (1-C), $51.8(1-\mathrm{M} \mathrm{e}), 109.7$ ($4-\mathrm{C}$), 126.3 (Ph), 127.9 (Ph), 129.2 (Ph), 134.0 (3-C), 140.2 (Ph), 168.3 (CO) and 174.8 (CO).

M ethyl 4-acetamido-3-phenylsulfonylcyclohex-3-enecarboxylate 8c. A viscous liquid; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3300(\mathrm{NH}), 1738$ (CO), $1674(\mathrm{CO}), 1367\left(\mathrm{SO}_{2}\right)$ and $1170\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right)$ 1.56-1.71 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 1.93-2.05 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), $2.14(3 \mathrm{H}, \mathrm{s}$, Ac), 2.29-2.40 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$), 2.42-2.58 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 2.873.02 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $3.09-3.22(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 19.6,4.3,5-\mathrm{H}$), 3.59 (3 $\mathrm{H}, \mathrm{s}, 1-\mathrm{M} \mathrm{e}$), 7.50-7.67 (3 H , m, Ph), 7.80-7.85 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and $10.52(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 24.1(6-\mathrm{C}), 25.4$ (4M e), 26.5 ($2-\mathrm{C}$), 27.8 ($5-\mathrm{C}$), 38.1 (1-C), 51.9 (1-M e), $111.3(3-\mathrm{C})$, 127.1 (Ph), 129.3 (Ph), 133.7 (Ph), 140.0 (Ph), 147.7 (4-C), 168.1 (CO) and 174.0 (CO); m/z 337 ($\mathrm{M}^{+}, 17 \%$), 294 (100), 218 (41), 196 (67), 154 (88), 153 (61), 110 (41) and 95 (70) (Found: M^{+}, $337.0981 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{M}, 337.0985$).
M ethyl 3-acetamido-4-phenylsulfonylcyclohex-3-enecarboxylate 9c. A viscous liquid; $v_{\max }$ (film)/ $/ \mathrm{cm}^{-1} 3307$ (N H), 1738 (CO), 1682 (CO), $1370\left(\mathrm{SO}_{2}\right)$ and $1171\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 1.50-1.71 (1 H, m, 6-H), 1.84-1.95 (1 H, m, 6-H), 2.15 (3 H , s, Ac), 2.17-2.26 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 2.48-2.59 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$), 3.15 (1 H, dd, J 19.0, 8.6, 2-H), 3.28 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 19.0,4.7,2-\mathrm{H}$), 3.63 (3 H, s, 1-M e), 7.48-7.67 (3 H , m, Ph), 7.77-7.84 (2 H, m, Ph) and $10.45(1 \mathrm{H}, \mathrm{br}$, NH$) ; \delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 23.4(6-\mathrm{C}), 24.1$ ($5-\mathrm{C}$), 25.3 (3-M e), 30.6 (2-C), 38.3 (1-C), 51.9 (1-M e), 112.7 (4-C), 127.0 (Ph), 129.3 (Ph), 133.6 (Ph), 140.2 (Ph), 145.6 (3-C), 168.2 (CO) and 178.9 (CO); m/z 337 ($\mathrm{M}^{+}, 19 \%$), 294
(100), 218 (48), 196 (60), 154 (88), 153 (60), 110 (45) and 95 (60) (Found: $\mathrm{M}^{+}, 337.0982 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{M}, 337.0985$).

1-A cetamido-4-acetyl-2-phenylthiocyclohexene 10a. A white crystalline solid, $\mathrm{mp} 35-37^{\circ} \mathrm{C}$ (from ether-hexane); $v_{\max }(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 3357(\mathrm{NH}), 1701$ (CO) and 1655 (CO); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; CDCl_{3}) $1.60-1.66(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.95(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Ac}), 2.01-2.11$ ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 2.08 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Ac}$), 2.23-2.50 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 2.57-2.68 (1 H, m, 4-H), 2.80-3.08 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 7.11-7.15 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.19-7.26 (2 H, m, Ph) and $7.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 24.44(5-\mathrm{C}), 24.49(1-\mathrm{M} \mathrm{e}), 27.5(3-\mathrm{C}), 27.9$ ($4-\mathrm{M} \mathrm{e}$), 31.9 ($6-\mathrm{C}$), 47.5 ($4-\mathrm{C}$), 108.0 (2-C), 126.3 (Ph), 127.9 (Ph), 129.2 (Ph), 134.0 (1-C), 141.7 (Ph), 168.2 (CO) and 209.5 (CO); m/z $289\left(\mathrm{M}^{+}, 10 \%\right), 180$ (100) and 155 (97) (Found: M^{+}, 289.1127. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N} \mathrm{O}_{2} \mathrm{~S}$ requires M , 289.1138).

2-A cetamido-4-acetyl-1-phenylthiocyclohexene 11a. A white crystalline solid, $\mathrm{mp} 48-51^{\circ} \mathrm{C}$ (from ether-hexane); $v_{\max }(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 3266(\mathrm{NH}), 1704(\mathrm{CO})$ and $1645(\mathrm{CO}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; CDCl_{3}) 1.55-1.71 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 1.88-1.98 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 1.95 ($3 \mathrm{H}, \mathrm{s}, ~ 4-\mathrm{Ac}$), 2.10 (3 H, s, 2-Ac), 2.15-2.26 (2 H, m, 6-H), 2.68-2.71 (1 H, m, 4-H), 2.83-2.92 (1 H, m, 3-H), 3.12-3.24 (1 H, m, 3-H), 7.09-7.16 (3 H, m, Ph), 7.19-7.26 (2 H , m, Ph) and 7.88 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$); $\delta_{\mathrm{c}}(75 \mathrm{MHz;} \mathrm{CDCl} 3$) $24.5(5-\mathrm{C}), 25.1$ ($2-\mathrm{M} \mathrm{e}$), 27.9 ($4-\mathrm{M} \mathrm{e)}$,29.5 (6-C), 29.7 (3-C), 46.9 ($4-\mathrm{C}$), 110.6 (1-C), 126.3 (Ph), 128.1 (Ph), 129.3 (Ph), 134.2 (2-C), 140.2 (Ph), 168.4 (CO) and 209.6 (CO); m/z 289 (M ${ }^{+}, 12 \%$), 180 (100) and 155 (95) (Found: M^{+}, 289.1125. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N} \mathrm{O}_{2} \mathrm{~S}$ requires M , 289.1138).

1-A cetamido-4-acetyl-2-phenylsulfonylcyclohexene 10c. A white crystalline solid, $\mathrm{mp} 77-79^{\circ} \mathrm{C}$ (from ether-hexane); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3319$ (NH), 1708 (CO), 1700 (CO), $1371\left(\mathrm{SO}_{2}\right)$ and $1138\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 1.97-2.10 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 2.11 (3 H , s, 4-A c), 2.16 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Ac}$), 2.21-2.33 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $5-\mathrm{H}), 2.41-2.60(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $4-\mathrm{H}), 2.91-3.06(1 \mathrm{H}$, m, 6-H), $3.18(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 18.1,4.7,6-\mathrm{H}$), $7.54-7.70(3 \mathrm{H}, \mathrm{m}$, Ph), $7.84-7.87(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $10.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}(75$ $\mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}$) 23.7 ($5-\mathrm{C}$), 25.4 ($4-\mathrm{M} \mathrm{e)}$,25.7 (1-M e), 27.9 ($3-\mathrm{C}$), 30.9 (6-C), 45.7 (4-C), 111.4 (2-C), 127.1 (Ph), 129.4 (Ph), 133.7 (Ph), 140.1 (Ph), 146.8 (1-C), 168.3 (CO) and 208.7 (CO); $\mathrm{m} / \mathrm{z} 321\left(\mathrm{M}^{+}, 38 \%\right), 278$ (86), 236 (69), 180 (57), 138 (56) and 81 (100) (Found: M^{+}, 321.1027. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ requires M , 321.1030).

2-A cetamido-4-acetyl-1-phenylsulfonylcyclohexene 11c. A white crystalline solid, $\mathrm{mp} 80.5-81.5^{\circ} \mathrm{C}$ (from ether-hexane); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3300(\mathrm{NH}), 1716(\mathrm{CO}), 1709(\mathrm{CO}), 1371\left(\mathrm{SO}_{2}\right)$ and $1138\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.52-1.67(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, 1.80-1.95 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 2.12 ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Ac}$), 2.16 ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Ac}$), 2.20-2.35 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 2.53-2.62 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 2.90-3.05 (1 H, m, 3-H), 3.15-3.30 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 7.52-7.70 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.80-7.86 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $10.46(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}(75 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 23.5 ($\times 2,4-\mathrm{M} \mathrm{e}, 5-\mathrm{C}$), 25.4 (2-M e), 27.9 ($6-\mathrm{C}$), 29.8 (3C), 45.8 (4-C), 112.6 (1-C), 126.9 (Ph), 129.3 (Ph), 133.6 (Ph), 140.2 (Ph), 146.0 (2-C), 168.3 (CO) and 208.4 (CO); m/z 321 (${ }^{+}$, 36\%), 278 (86), 236 (67), 180 (55), 167 (25), 138 (53) and 81 (100) (Found: $\mathrm{M}^{+}, 321.1025 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N} \mathrm{O}_{4} \mathrm{~S}$ requires M , 321.1030).

General procedure for the Lewis acid-catalysed D iels-A Ider reactions of la-c

Dichloromethane ($1 \mathrm{~cm}^{3}$) and methyl vinyl ketone ($0.12 \mathrm{~cm}^{3}$) were added sequentially to zinc chloride ($200 \mathrm{mg}, 1.5 \mathrm{mmol}$) which had been flamedried in vacuo and then purged three times with nitrogen. After the mixture had been vigorously stirred for 20 min , a solution of each of the dienes $1 \mathrm{a}-\mathrm{c}(0.15$ mmol) in dichloromethane ($2 \mathrm{~cm}^{3}$) was added dropwise at room temperature to the reaction mixture. A fter this had been stirred for 48 h it was quenched with water ($5 \mathrm{~cm}^{3}$) and extracted with dichloromethane ($10 \mathrm{~cm}^{3} \times 3$). The combined extracts were dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$, and concentrated by rotary evaporation to give the crude product. The ${ }^{1} H \mathrm{~N} M \mathrm{R}$ spectrum of the crude product was used to determine the ratio of the regioisomers. The crude
product was then purified by flash column chromatography to confirm the structure of the products and to determine the yield of the reaction. For the reaction of $\mathbf{1 b}$, a mixture of four diastereoisomers (2.7:1.6:1:1) was obtained. To determine the regiochemistry of the reaction, the crude product was oxidized by M CPBA (2.0 equiv.) to give a mixture of two diastereoisomers $\mathbf{1 0 c}$ and $\mathbf{1 1 c}$ (2.2:1).

C onversion of 6 c and 7 c into methyl 4-acetamidobenzoate 12 and methyl 3 -acetamidobenzoate 13

To a $2: 1$ mixture of $\mathbf{6 c}$ and $\mathbf{7 c}(53 \mathrm{mg})$ was added a solution of potassium hydroxide (46 mg) in methanol ($5 \mathrm{~cm}^{3}$). The mixture was stirred at room temperature for 2 h after which the solvent was removed by rotary evaporation. The residue was dissolved in dichloromethane $\left(25 \mathrm{~cm}^{3}\right)$, and the solution was washed with water $\left(20 \mathrm{~cm}^{3}\right)$ and brine $\left(20 \mathrm{~cm}^{3}\right)$, and dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$. A fter evaporation of the solution, the crude product was purified by flash chromatography using hexane as the eluent to give a 2:1 mixture of $\mathbf{1 2}$ and $\mathbf{1 3}(38 \mathrm{mg}, 53 \%)$, the structures and ratios of which were determined from the ${ }^{1} H$ NMR spectrum. The data obtained matched well with the literature values. ${ }^{20,21} \mathrm{U}$ sing a similar procedure pure $\mathbf{6 c}$ gave $\mathbf{1 2}$ only.

Acknowledgements

We thank the N ational Science Council of the Republic of China for financial support (N SC 82-0208-M -030-06).

References

1 W. Carruthers, Cycloaddition Reactions in Organic Synthesis, Pergamon, Oxford, 1990 and references cited therein.
2 F. Fringuelli and A. Tatichi, Dienes in the Diels-Alder Reaction, Wiley, N ew York, 1990.
3 T. S. Chou and H. H. Tso, Organic Prep. Proc. Int., 1989, 21, 259.
4 T. S. Chou and S. S. P. Chou, J. Chin. Chem. Soc., 1992, 39, 625.
5 (a) S. S. P. Chou, S. Y. Liou, C. Y. Tsai and A. J. Wang, J. Org. Chem., 1987, 52, 4468; (b) S. S. P. Chou, C. Y. Tsai and C. M. Sun, J. Chin. Chem. Soc., 1989, 36, 149; (c) S. S. P. Chou and C. C. Sun, J. Chin. Chem. Soc., 1989, 36, 601; (d) S. S. P. Chou and W. H. Lee, Synthesis, 1990, 219; (e) S. S. P. Chou and H. P. Tai, J. Chin. Chem. Soc., 1993, 40, 463; (f) S. S. P. Chou, C. S. Lee, M. C. Cheng and H. P. Tai, J. Org. Chem., 1994, 59, 2010; (g) S. S. P. Chou, D. J. Sun and H. P. Tai, J. Chin. Chem. Soc., 1995, 42, 809; (h) S. S. P. Chou and M. H. Chao, Tetrahedron Lett., 1995, 48, 8825; (i) S. S. P. Chou and M. H. Chao, J. Chin. C hem. Soc., 1996, 43, 53.
6 (a) K. N. H ouk, A cc. Chem. Res., 1975, 8, 361; (b) P. V. A Iston, R. M. Ottenbrite, O. F. Guner and D. D. Shillady, Tetrahedron, 1986, 42, 4403.
7 For some examples of 1,4-disubstitution: (a) B. M. Trost, J. Ippen and W. C. Vladuchick, J. Am. Chem. Soc., 1977, 99, 8116; (b) M. K oreeda and M. A. Ciufolini, J. Am. Chem. Soc., 1982, 104, 2308; (c) L. E. Overman, C. B. Petty, T. B an and G. T. H uang, J. A m. Chem. Soc., 1993, 105, 6335; (d) J. J. Pegram and C. B. A nderson, Tetrahedron Lett., 1988, 29, 6719; (e) G. H. Posner and C. M . K inter, J. Org. Chem., 1990, 55, 3967; (f) J. J. Pegram and C. B. A nderson, Tetrahedron L ett., 1991, 32, 2197.

8 For some examples of 1,2-disubstitution: (a) T. Cohen, T. R. J. Ruffner, D. W. Shull, W. M. D aniewski, R. M . Ottenbrite and P. V. A Iston, J. Org. Chem., 1978, 43, 4052; (b) M. E. Jung, K. Shishido, L. Light and L. D avis, Tetrahedron Lett., 1981, 22, 4607; (c) M . E. G arst and P. Arrhenius, Synth. Commun., 1981, 11, 481; (d) A. P. K ozikowski and E. M. H uie, J. Am. Chem. Soc., 1982, 104, 2923; (e) T. C ohen and Z. K osarych, J. O rg. Chem., 1982, 47, 4005; (f) P. V. A Iston, M. D. Gordon, R. M. Ottenbrite and T. Cohen, J. Org. Chem., 1983, 48, 5051; (g) G. R evial, M. Blanchard and J. d'A ngelo, Tetrahedron Lett., 1983, 24, 89; (h) M . J. Fisher and L. E. Overman, J. Org. Chem., 1988, 53, 2630; (i) H. K osugi, K. Hoshino and H. U da, J. C hem. Soc., C hem. Commun., 1992, 560.

9 For some examples of 2,3-disubstitution: (a) B. M. Trost, W. C. Vladuchick and A. J. Bridges, J. A m. Chem. Soc., 1980, 102, 3554; (b) A. J. Bridges and J. W. F ischer, Tetrahedron Lett., 1983, 24, 447; (c) A. J. Bridges and J. W. Fischer, J. Org. Chem., 1984, 49, 2954; (d) P. J. Proteau and P. B. H opkins, J. Org. Chem., 1985, 50, 141; (e) S. S. P. Chou and C. Y. Tsai, J. Org. Chem., 1988, 53, 5305; (f) S. S. P. Chou and D. J. Sun, J. Chin. Chem. Soc., 1989, 35, 437; (g) T. G. Back, E. K. Y. Lai and K. R. M uralidharan, J. Org. Chem., 1990, 55, 4595; (h) H. K osugi, K . H oshino and H. U da, Chem. Lett., 1991, 1577; (i) T. S. Chou, C. Y. Chang, M. C. Wu, W. H. H ung, H. M. Liu and W. Y. Yeh, J. Chem. Soc., Chem. Commun., 1992, 1643; (j) P. Padwa, Y. G areau, B. H arrison and A. Rodriguez, J. Org. Chem., 1992, 57, 3540; (k) S. S. P. Chou and M. C. Cheng, J. Org. C hem., 1993, 58, 967.
10 M . Petrzilka and J. I. G rayson, Synthesis, 1981, 753.
11 (a) S. S. P. Chou and D. J. Sun, J. Chem. Soc., C hem. Commun., 1988, 1176; (b) S. S. P. Chou, C. Y. Tsai and C. M. Sun, J. Chin. Chem. Soc., 1989, 36, 227.
12 S. D. K han, C. F. Pau, L. E. Overman and W. J. H ehre, J. Am. C hem. Soc., 1986, 108, 7381.
13 T. Rosen, I. M. Lico and W. D. T. Chu, J. Org. Chem., 1988, 53, 1580.

14 (a) W. L. M ock, J. A m. C hem. Soc., 1966, 88, 2857; (b) S. D. K ellog and D. M. Lemal, J. Am. Chem. Soc., 1966, 88, 2858; (c) R. M. K ellog and W. L. Prins, J. Org. Chem., 1974, 39, 2366.
15 (a) M. J. S. D ewar, E. G. Zoebisch, E. F. H ealy and J. J. P. Steward, J. A m. C hem. Soc., 1985, 107, 3902; (b) J. J. P. Stewart, J. C omputerAided M ol. Design, 1990, 4, 1; (c) M OPAC 6.0 program was distributed by QCPE, Indiana U.
16 (a) W. J. Hehre, Practical Strategies for Electronic Structure Calculations, Wavefunction, Inc., U SA, 1995; (b) PM 3 and A M 1 programs implanted in SPARTA N version 4.1, Wavefunction, Inc., I rvine, CA , U SA .
17 D. G insburg, Tetrahedron, 1983, 39, 2095.
18 D. D. Perrin, W. L. F. A rmarego and D. R. Perrin, Purification of L aboratory C hemicals, 2nd edn., Pergamon Press, N ew York, 1980.
19 T. S. Chou, S. J. Lee, M. L. Peng, D. J. Sun and S. S. P. Chou, J. Org. C hem., 1988, 53, 3027. The work-up procedure was slightly modified by first neutralization with 5% aq. HC 1 , saturation with solid NaCl , followed by extraction with ethyl acetate.
20 G. P. Schiemenz and G. Stein, Tetrahedron, 1970, 26, 2007.
21 M . F ujio, Y. Tsuno, Y. Yukawa and Y. Takai, Bull. Chem. Soc. J pn., 1975, 48, 3330.

Paper 6/07817F
Received 18th N ovember 1996
A ccepted 11th February 1997

